User’s Guide
to

PCL-CVS — The Emacs Front-End to CVS

Per Cederqvist
Stefan Monnier

Copyright (©) 1991,92,93,94,95,96,97,98,99,2000 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.1 or any later version published by
the Free Software Foundation; with the Invariant Sections being “The GNU Manifesto”,
“Distribution” and “GNU GENERAL PUBLIC LICENSE”, with the Front-Cover texts
being “A GNU Manual”, and with the Back-Cover Texts as in (a) below. A copy of the
license is included in the section entitled “GNU Free Documentation License” in the Emacs
manual.

This document is part of a collection distributed under the GNU Free Documentation
License. If you want to distribute this document separately from the collection, you can do
so by adding a copy of the license to the document, as described in section 6 of the license.

(a) The FSF’s Back-Cover Text is: “You have freedom to copy and modify this GNU
Manual, like GNU software. Copies published by the Free Software Foundation raise funds
for GNU development.”

Chapter 1: About PCL-CVS 1

1 About PCL-CVS

PCL-CVS is a front-end to CVS versions 1.9 and later. It concisely shows the present
status of a checked out module in an Emacs buffer and provides single-key access to the
most frequently used CVS commands. For Emacs users accustomed to VC, PCL-CVS can
be thought of as a replacement for VC-dired (see section “Dired under VC” in The GNU
Emacs Manual) specifically designed for CVS.

PCL-CVS was originally written many years ago by Per Cederqvist who proudly main-
tained it until January 1996, at which point he released the beta version 2.0b2 and passed
on the maintainership to Greg A Woods. Development stayed mostly dormant for a few
years during which version 2.0 never seemed to be able to leave the “beta” stage while a
separate XEmacs version was slowly splitting away. In late 1998, Stefan Monnier picked up
development again, adding some major new functionality and taking over the maintenance.

As of Emacs 21, PCL-CVS is part of the standard Emacs distribution.

1.1 Contributors to PCL-CVS

Contributions to the package are welcome. I have limited time to work on this project,
but I will gladly add any code that you contribute to me to this package (see Chapter 9
[Bugs|, page 18).

The following persons have made contributions to PCL-CVS.

e Brian Berliner wrote CVS, together with some other contributors. Without his work
on CVS this package would be useless. . .

e Per Cederqvist wrote most of the otherwise unattributed functions in PCL-CVS as well
as all the documentation.

e Inge Wallin (inge@lysator.liu.se) wrote the skeleton of ‘pcl-cvs.texi’, and gave
useful comments on it. He also wrote the files ‘elib-node.el’ and ‘compile-all.el’.
The file ‘cookie.el’ was inspired by Inge.

e Linus Tolke (1inus@lysator.liu.se) contributed useful comments on both the func-
tionality and the documentation.

e Jamie Zawinski (jwz@jwz.com) contributed ‘pcl-cvs-lucid.el’, which was later re-
named to ‘pcl-cvs-xemacs.el’.

e Leif Lonnblad contributed RCVS support (since superceded by the new remote CVS
support).

e Jim Blandy (jimb@cyclic.com) contributed hooks to automatically guess CVS log
entries from ‘ChangeLog’ contents, and initial support of the new Cygnus / Cyclic
remote CVS, as well as various sundry bug fixes and cleanups.

e Jim Kingdon (kingdon@cyclic.com) contributed lots of fixes to the build and instal-
lation procedure.

e Greg A. Woods (woods@weird.com) contributed code to implement the use of per-file
diff buffers, and vendor join diffs with emerge and ediff, as well as various and sundry
bug fixes and cleanups.

e Greg Klanderman (greg.klanderman@alum.mit.edu) implemented toggling of marked
files, setting of CVS command flags via prefix arguments, updated the XEmacs support,
updated the manual, and fixed numerous bugs.

Chapter 1: About PCL-CVS 2

e Stefan Monnier (monnier@cs.yale.edu) added a slew of other features and introduced
even more new bugs. If there’s any bug left, you can be sure it’s his.

e Masatake YAMATO (masata-y@is.aist-nara.ac.jp) made a gracious contribution
of his cvstree code to display a tree of tags which was later superseded by the new
cvs—-status-mode.

Apart from these, a lot of people have sent us suggestions, ideas, requests, bug reports
and encouragement. Thanks a lot! Without you there would be no new releases of PCL-
CVS.

1.2 Installation

As mentioned above, PCL-CVS comes bundled with Emacs version 21.1 and later.
If you’re using Emacs 20, you can download an older version of PCL-CVS from
ftp://flint.cs.yale.edu/pub/monnier/pcl-cvs. That version also works on XEmacs.

If you are running XEmacs 21.0 or later, PCL-CVS is available in pre-compiled package
form. Please refer to the XEmacs manual for instructions regarding package selection and
installation. Currently, that PCL-CVS package also requires you to have installed the
‘xemacs-base’, ‘elib’, and ‘dired’ packages.

If you have TgEX installed at your site, you can make a typeset manual from
‘pcl-cvs.texi’.

1. If PCL-CVS came with the Emacs distribution, type make pcl-cvs.dvi in the ‘man’
subdirectory of the Emacs source tree.

2. Alternatively, run TEX by typing texi2dvi pcl-cvs.texi.

3. Convert the resulting device independent file ‘pcl-cvs.dvi’ to a form which your
printer can output and print it. If you have a PostScript printer, there is a program,
dvi2ps, which does. There is also a program which comes together with TEX, dvips,
which you can use.

Chapter 2: Getting started 3

2 Getting started

This document assumes that you know what CVS is, and that you at least know the fun-
damental concepts of CVS. If that is not the case, you should read the CVS documentation.
Type info -f cvs or man cvs.

PCL-CVS is only useful once you have checked out a module. So before you invoke it,
you must have a copy of a module somewhere in the file system.

You can invoke PCL-CVS by typing M-x cvs-examine (RET). You can also invoke it via
the menu bar, under ‘Tools’. Or, if you prefer, you can also invoke PCL-CVS by simply
visiting the CVS administrative subdirectory of your module, with a prefix argument. For
example, to invoke PCL-CVS in a separate frame, type C-u C-x 5 £ ~/my/project/CVS
RET).

The function cvs-examine will ask for a directory. The command ‘cvs -n update’ will
be run in that directory. (It should contain files that have been checked out from a CVS
archive.) The output from cvs will be parsed and presented in a table in a buffer called
‘xcvs*’. It might look something like this:

Repository : /usr/CVSroot
Module : test
Working dir: /users/ceder/F00/test

In directory .:

Need-Update bar
Need-Update file.txt
Modified namechange
Need-Update newer
In directory sub:
Modified Changelog
————————————————————— End ----—--------—-

-- last cmd: cvs -f -z6 -n update -d -P --

In this example, your repository is in ‘/usr/CVSroot’ and CVS has been run in the
directory ‘/users/ceder/F00/test’. The three files (‘bar’, ‘file.txt’ and ‘newer’) that
are marked with ‘Need-Update’ have been changed by someone else in the CVS repository.
Two files (‘namechange’ and ‘sub/ChangeLog’) have been modified locally, and need to be
checked in.

You can move the cursor up and down in the buffer with C-n and C-p or n and p. If you
press c on one of the ‘Modified’ files, that file will be checked in to the CVS repository. See
Section 5.6 [Committing changes], page 9. You can also press 0 to update any of the files
that are marked ‘Need-Update’. You can also run M-x cvs-update (bound to M-u in
the ‘*cvs*’ buffer) to update all the files.

You can then press = to easily get a ‘diff’ between your modified file and the base
version that you started from, or you can press 1 to get the output from ‘cvs log’. Many
more such commands are available simply by pressing a key (see Section 5.8 [Getting info
about files], page 10).

Chapter 3: Buffer contents 4

3 Buffer contents

The display contains several columns, some of which are optional. These columns are,
from left to right:

e Optionally, the head revision of the file. This is the latest version found in the reposi-
tory. It might also contain (instead of the head revision) a sub status which typically
gives further information about how we got to the current state, for example ‘patched’,
‘merged’, ...

e An asterisk when the file is marked (see Chapter 4 [Selected files], page 6).

e The actual status of the file wrt the repository. See below.

e Optionally, the base revision of the file. This is the version which the copy in your
working directory is based upon.

e The file name.

The ‘file status’ field can have the following values:

‘Modified’

‘Conflict’

‘Added’

‘Removed’

The file is modified in your working directory, and there was no modification
to the same file in the repository. This status can have the following substatus:

‘merged’ The file was modified in your working directory, and there were
modifications in the repository as well, but they were merged suc-
cessfully, without conflict, in your working directory.

A conflict was detected while trying to merge your changes to file with changes
from the repository. file (the copy in your working directory) is now the output
of the rcsmerge command on the two versions; an unmodified copy of your file
is also in your working directory, with the name ‘. #file. version’, where version is
the RCS revision that your modified file started from. See Section 5.13 [Viewing
differences|, page 12, for more details.

A conflict can also come from a disagreement on the existence of the file rather
than on its content. This case is indicated by the following possible substatus:

‘removed’ The file is locally removed but a new revision has been committed
to the repository by someone else.

‘added’ The file is locally added and has also been added to the repository
by someone else.

‘modified’
The file is locally modified but someone else has removed it from
the repository.

The file has been added by you, but it still needs to be checked in to the

repository.

The file has been removed by you, but it still needs to be checked in to the
repository. You can resurrect it by typing a (see Section 5.9 [Adding and
removing files], page 10).

Chapter 3: Buffer contents 5

‘Unknown’ A file that was detected in your directory, but that neither appears in the
repository, nor is present on the list of files that CVS should ignore.

‘Up-to-date’
The file is up to date with respect to the version in the repository. This status
can have a substatus of:

‘added’ You have just added the file to the repository.

‘updated’ The file was brought up to date with respect to the repository.
This is done for any file that exists in the repository but not in
your source, and for files that you haven’t changed but are not the
most recent versions available in the repository.

‘patched’ The file was brought up to date with respect to the remote repos-
itory by way of fetching and applying a patch to the file in your
source. This is equivalent to ‘updated’ except that CVS decided to
use a hopefully more efficient method.

‘committed’
You just committed the file.

‘Need-Update’
Either a newer version than the one in your source is available in the repository
and you have not modified your checked out version, or the file exists in the
repository but not in your source. Use ‘cvs-mode-update’ bound to 0 to update

the file.

‘Need-Merge’
You have modified the checked out version of the file, and a newer version
is available in the repository. A merge will take place when you run a
‘cvs-update’.

‘Missing’ The file has been unexpectedly removed from your working directory although
it has not been ‘cvs remove’d.

Chapter 4: Selected files 6

4 Selected files

Many of the commands work on the current set of selected files which can be either the
set of marked files (if any file is marked and marks are no ignored) or whichever file or
directory the cursor is on.

If a directory is selected but the command cannot be applied to a directory, then it will
be applied to the set of files under this directory which are in the ‘*cvs*’ buffer.

Furthermore, each command only operates on a subset of the selected files, depending
on whether or not the command is applicable to each file (based on the file’s status).
For example, cvs-mode-commit is not applicable to a file whose status is ‘Need-Update’.
If it should happen that PCL-CVS guesses the applicability wrong, you can override it
with the special prefix cvs-mode-force-command normally bound to M-f (and file a bug
report). The applicability rule can be slightly changed with cvs-allow-dir-commit and
cvs-force-dir-tag.

By default, marks are always in effect (you may change this, however, by setting the
variable cvs-default-ignore-marks) except for the commands that ‘tag’ or ‘diff’ a file
(which can be changed with the variable cvs-invert-ignore-marks).

In addition, you may use the special prefix cvs-mode-toggle-marks normally bound to
(T to toggle the use of marks for the following command.

This scheme might seem a little complicated, but once one gets used to it, it is quite
powerful.

For commands to mark and unmark files, see Section 5.5 [Marking files], page 9.

Chapter 5: Commands 7

5 Commands

This chapter describes all the commands that you can use in PCL-CVS.

5.1 Entering PCL-CVS

Most commands in PCL-CVS require that you have a ‘xcvs*’ buffer. The commands
that you use to get one are listed below. For each, a ‘cvs’ process will be run, the output will
be parsed by PCL-CVS, and the result will be printed in the ‘*cvs*’ buffer (see Chapter 3
[Buffer contents|, page 4, for a description of the buffer’s contents).

M-x cvs-update
Run a ‘cvs update’ command. You will be asked for the directory in which the
‘cvs update’ will be run.

M-x cvs—examine
Run a ‘cvs -n update’ command. This is identical to the previous command,
except that it will only check what needs to be done but will not change any-
thing. You will be asked for the directory in which the ‘cvs -n update’ will be
run.

M-x cvs—-status
Run a ‘cvs status’ command. You will be asked for the directory in which the
‘cvs status’ will be run.

M-x cvs—checkout
Run a ‘cvs checkout’ command. You will be asked for the directory in which
the ‘cvs update’ will be run and the module to be checked out.

M-x cvs—quickdir
Populate the ‘*cvs*’ buffer by just looking at the ‘CVS/Entries’ files. This is
very much like cvs-examine except that it does not access the CVS repository,
which is a major advantage when the repository is far away. But of course, it
will not be able to detect when a file needs to be updated or merged.

The first four of those commands are also reachable from the menu bar under
‘Tools->PCL-CVS’. Finally, an alternative way is to visit the CVS administrative
subdirectory in your work area with a simple prefix argument. For example C-u C-x C-f
~/my/work/CVS (RET). This by default runs cvs-quickdir but the specific behavior can
be changed with cvs-dired-action and cvs-dired-use-hook.

By default, the commands above will descend recursively into subdirectories. You can
avoid that behavior by including ‘-1’ in the flags for the command. These flags can be set
by giving a prefix argument to the command (e.g., by typing C-u M-x cvs-update -1
EET)).

5.2 Setting flags for CVS commands

This section describes the convention used by nearly all PCL-CVS commands for setting
optional flags sent to CVS. A single C-u prefix argument is used to cause the command

Chapter 5: Commands 8

to prompt for flags to be used for the current invocation of the command only. Two C-u
prefix arguments are used to prompt for flags which will be set permanently, for the current
invocation and all that follow, until the flags are changed, or unless temporary flags are set
which override them.

Perhaps an example or two is in order. Say you are about to add a binary file to the
repository, and want to specify the flags ‘~kb’ to ‘cvs add’. You can type C-u a -kb (RET),
enter the description, and the file will be added. Subsequent ‘cvs add’ commands will use
the previously prevailing flags.

As a second example, say you are about to perform a diff and want to see the result in
unified diff format, i.e. you’d like to pass the flag ‘-u’ to both ‘cvs diff’ and ‘diff’. You’d
also like all subsequent diffs to use this flag. You can type C-u C-u = -u and the diff
will be performed, and the default flags will be set to ("-u"). You can of course override
this flag for a single diff by using a single C-u prefix argument.

In addition to this, some commands can take special prefix arguments. These work as
follows: When called with a C-u prefix, the user is prompted for a new value of the special
prefix and the special prefix is activated for the next command. When called without the
C-u prefix, the special prefix is re-activated (with the same value as last time) for the
next command. Calling the prefix command again when it’s already activated deactivates
it. Calling it with the C-u C-u prefix activates it for all subsequent commands until you
deactivate it explicitly. The special prefixes are:

T Toggles whether or not marks will be active in the next command.

b Provide the next command with a branch (can be any version specifier) to work
on.

B Secondary branch argument. Only meaningful if b is also used. It can be used to

provide a second branch argument to cvs-mode-diff or to cvs-mode-update.

M-f Forces the next command to apply to every selected file rather than only to the
ones PCL-CVS thinks are relevant.

5.3 Updating the ‘*cvs*’ buffer

The following commands can be used from within the ‘*cvs*’ buffer to update the
display:

M-u Runs the command ‘cvs-update’.
M-e Runs the command ‘cvs-examine’.
M-s Runs the command ‘cvs-status’.

In addition to the above commands which operate on the whole module, you can run
the equivalent CVS command on just a subset of the files/directories with these keys:

0 Runs cvs-mode-update on the selected files. When run on the top-level direc-
tory, this is equivalent to M-u.

e Runs cvs-mode-examine on the selected files. When run on the top-level di-
rectory, this is equivalent to M-e.

Chapter 5: Commands 9

s Runs cvs-mode-status on the selected files. When run on the top-level di-
rectory, this is equivalent to M-s, except that CVS output will be shown in a
‘*cvs-infox*’ buffer that will be put in ‘cvs-status-mode’.

5.4 Movement Commands

You can use most normal Emacs commands to move forward and backward in the buffer.
Some keys are rebound to functions that take advantage of the fact that the buffer is a PCL-
CVS buffer:

n These keys move the cursor one file forward, towards the end of the buffer
(cvs-mode-next-line).
P This key moves one file backward, towards the beginning of the buffer (cvs-

mode-previous-line).

5.5 Marking files

PCL-CVS works on a set of selected files (see Chapter 4 [Selected files|, page 6). You
can mark and unmark files with these commands:

m This marks the file that the cursor is positioned on. If the cursor is positioned
on a directory all files in that directory are marked. (cvs-mode-mark).

u Unmark the file that the cursor is positioned on. If the cursor is on a directory,
all files in that directory are unmarked. (cvs-mode-unmark).

M Mark all files in the buffer (cvs-mode-mark-all-files).
M-(DEL) Unmark all files (cvs-mode-unmark-all-files).

DEL Unmark the file on the previous line, and move point to that line (cvs-mode-
unmark-up).

Mark all files matching a regular expression (cvs-mode-mark-matching-
files).
@ Toggle use of marks for the next command (cvs-mode-toggle-marks).

5.6 Committing changes

Committing changes basically works as follows:

1. After having selected the files you want to commit, you type either ¢ or C which brings
up a special buffer ‘*cvs—-commit*’.

2. You type in the log message describing the changes you’re about to commit (see Chap-
ter 6 [Log Edit Mode], page 14).

3. When you're happy with it, you type C-c C-c to do the actual commit.

There’s no hidden state, so you can abort the process or pick it up again at any time.

The set of files actually committed is really decided only during the very last step,
which is a mixed blessing. It allows you to go back and change your mind about which

Chapter 5: Commands 10

files to commit, but it also means that you might inadvertently change the set of selected
files. To reduce the risk of error, C-c C-c will ask for confirmation if the set of selected
files has changed between the first step and the last. You can change this last detail with
log-edit-confirm.

As for the difference between c¢ (i.e. cvs-mode-commit) and C (i.e. cvs-mode-commit-
setup) is that the first gets you straight to ‘*cvs-commit*’ without erasing it or changing
anything to its content, while the second first erases ‘*cvs-commit*’ and tries to initial-
ize it with a sane default (it does that by either using a template provided by the CVS
administrator or by extracting a relevant log message from a ‘ChangeLog’ file).

If you are editing the files in your Emacs, an automatic ‘revert-buffer’ will be per-
formed. (If the file contains ‘Id’ keywords, ‘cvs commit’ will write a new file with the
new values substituted. The auto-revert makes sure that you get them into your buffer).
The revert will not occur if you have modified your buffer, or if ‘cvs-auto-revert’ is set
to ‘nil’.

5.7 Editing files

There are currently three commands that can be used to find a file (that is, load it into
a buffer and start editing it there). These commands work on the line that the cursor is
situated at. They always ignore any marked files.

f Find the file that the cursor points to (cvs-mode-find-file). If the cursor
points to a directory, run dired on that directory; See Info file ‘emacs’, node
‘Dired’.

) Like £, but use another window (cvs-mode-find-file-other-window).

A Invoke ‘add-change-log-entry-other-window’ to edit a ‘ChangeLog’ file. The

‘ChangelLog’ file will be found in the directory of the file the cursor points to,
or in a parent of that directory. (cvs-mode-add-change-log-entry-other-
window).

5.8 Getting info about files

1 Call the command cvs-mode-log which runs ‘cvs log’ on all selected files, and
show the result in a temporary buffer ‘*cvs-info*’ (see Chapter 7 [Log View
Mode], page 15).

s Call the command cvs-mode-status which runs ‘cvs status’ on all selected
files, and show the result in a temporary buffer ‘*cvs-infox’.

5.9 Adding and removing files

The following commands are available to make it easy to add files to and remove them
from the CVS repository.

a Add all selected files. This command can be used on ‘Unknown’ files (see Chap-
ter 3 [Buffer contents], page 4). The status of the file will change to ‘Added’,

Chapter 5: Commands 11

and you will have to use ¢ (‘cvs-mode-commit’ see Section 5.6 [Committing
changes], page 9), to really add the file to the repository.

This command can also be used on ‘Removed’ files (before you commit them)
to resurrect them.

The command that is run is cvs-mode-add.

This command removes the selected files (after prompting for confirmation).
The files are deleted from your directory and (unless the status was ‘Unknown’;
see Chapter 3 [Buffer contents|, page 4) they will also be ‘cvs remove’d. If the
files’ status was ‘Unknown’ they will disappear from the buffer. Otherwise their
status will change to ‘Removed’, and you must use c¢ (‘cvs-mode-commit’, see
Section 5.6 [Committing changes], page 9) to commit the removal.

The command that is run is cvs-mode-remove-file.

5.10 Undoing changes

U

If you have modified a file, and for some reason decide that you don’t want
to keep the changes, you can undo them with this command. It works by
removing your working copy of the file and then getting the latest version from
the repository (cvs-mode-undo-local-changes.

5.11 Removing handled entries

C-k

This command allows you to remove all entries that you have processed. More
specifically, the lines for ‘Up-to-date’ files (see Chapter 3 [Buffer contents],
page 4) are removed from the buffer. If a directory becomes empty the heading
for that directory is also removed. This makes it easier to get an overview of
what needs to be done.

x invokes cvs-mode-remove-handled. If ‘cvs-auto-remove-handled’ is set to

non-nil, this will automatically be performed after every commit.

This command can be used for lines that ‘cvs-mode-remove-handled’ would
not delete, but that you want to delete (cvs-mode-acknowledge).

5.12 Ignoring files

Arrange so that CVS will ignore the selected files. The file names are added to
the ‘.cvsignore’ file in the corresponding directory. If the ‘.cvsignore’ file
doesn’t exist, it will be created.

The . cvsignore’ file should normally be added to the repository, but you could
ignore it as well, if you like it better that way.

This runs cvs-mode-ignore.

Chapter 5: Commands 12

5.13 Viewing differences

Qo
I

Display a ‘cvs diff’ between the selected files and the version that they are
based on. (cvs-mode-diff).

db If CVS finds a conflict while merging two versions of a file (during a ‘cvs
update’, see Section 5.3 [Updating the buffer]|, page 8) it will save the original
file in a file called ‘.#file. version’ where file is the name of the file, and version
is the revision number that file was based on.

With the d b command you can run a ‘diff’ on the files ‘.#file. version’ and
‘file’.
dh Display a ‘cvs diff’ between the selected files and the head revision in the

repository (the most recent version on the current branch) (cvs-mode-diff-
head).

dv Display a ‘cvs diff’ between the selected files and the head revision of the
vendor branch in the repository. (cvs-mode-diff-vendor).

By default, ‘diff’ commands ignore the marks. This can be changed with cvs-invert-
ignore-marks.

5.14 Running ediff

de This uses ediff (or emerge, depending on ‘cvs-idiff-imerge-handlers’) to
allow you to view diffs. If a prefix argument is given, PCL-CVS will prompt
for a revision against which the diff should be made, else the default will be to
use the BASE revision.

dE This command use ediff (or emerge, see above) to allow you to do an inter-
active 3-way merge.

Note: When the file status is ‘Conflict’, CVS has already performed a merge.
The resulting file is not used in any way if you use this command. If you use
the g command inside ‘ediff’ (to successfully terminate a merge) the file that
CVS created will be overwritten.

5.15 Updating files

0 Update all selected files with status ‘Need-update’ by running ‘cvs update’ on
them. (cvs-mode-update).

5.16 Tagging files

t Tag all selected files by running ‘cvs tag’ on them (cvs-mode-tag). It’s usually
preferable to tag a directory at a time. Rather than selecting all files (which
too often doesn’t select all files but only the few that are displayed), clear the
selection with M-DEL (cvs-mode-unmark-all-files), position the cursor on
the directory you want to tag and hit t.

Chapter 5: Commands 13

By default, ‘tag’ commands ignore the marks. This can be changed with cvs-invert-
ignore-marks. Also, by default ‘tag’ can only be applied to directories, see cvs-force-
dir-tag if you want to change this behavior.

5.17 Miscellaneous commands

M-x cvs—-mode-byte-compile-files
Byte compile all selected files that end in ‘.el’.

M-x cvs—-mode-delete-lock
This command deletes the lock files that the ‘*cvs*’ buffer informs you about.
You should normally never have to use this command, since CVS tries very
carefully to always remove the lock files itself.

You can only use this command when a message in the ‘“*cvs*’ buffer tells you
so. You should wait a while before using this command in case someone else is
running a cvs command.

Also note that this only works if the repository is local.

Show a summary of common command key bindings in the echo area (cvs-
help).

q Quit PCL-CVS, killing the ‘*cvs*’ buffer (cvs-mode-quit).

Chapter 6: Editing a Log Message 14

6 Editing a Log Message

Buffers for entering/editing log messages for changes which are about to be committed
are put into Log Edit mode.

Sometimes the log buffer contains default text when you enter it, typically the last log
message entered. If it does, mark and point are set around the entire contents of the buffer
so that it is easy to kill the contents of the buffer with C-w.

If you work by writing entries in the ‘ChangeLog’ (see (undefined) [(emacs)Change Log],
page (undefined)) and then commit the change under revision control, you can generate the
Log Edit text from the ChangelLog using C-a C-a (log-edit-insert-changelog). This
looks for entries for the file(s) concerned in the top entry in the ChangeLog and uses those
paragraphs as the log text. This text is only inserted if the top entry was made under your
user name on the current date. See (undefined) [(emacs)Change Logs and VC], page (un-
defined), for the opposite way of working—generating Changel.og entries from the revision
control log.

In the Log Edit buffer, C-c C-f (M-x log-edit-show-files) shows the list of files to be
committed in case you need to check that.

When you have finished editing the log message, type C-c C-c to exit the buffer and
commit the change.

Chapter 7: Browsing a Log of Changes 15

7 Browsing a Log of Changes

Log View mode provides a few useful commands for navigating revision control log
output. It is used for the output buffers of both cvs-mode-log and vc-print-log.

In this mode, n goes to the next message and p goes to the previous message and N and
P go to the next and previous files, respectively, in multi-file output. With a numeric prefix
argument, these commands move that many messages of files.

Chapter 8: Customization 16

8 Customization

If you have an idea about any customization that would be handy but isn’t present in
this list, please tell me! For info on how to reach me, see Chapter 9 [Bugs], page 18.

‘cvs—auto-remove-handled’
If this variable is set to any non-nil value, ‘cvs-mode-remove-handled’ will be
called every time you check in files, after the check-in is ready. See Section 5.11
[Removing handled entries], page 11.

‘cvs—auto-remove-directories’
If this variable is set to any non-nil value, directories that do not contain any
files to be checked in will not be listed in the ‘*cvs*’ buffer.

‘cvs—auto-revert’
If this variable is set to any non-‘nil’ value any buffers you have that visit a
file that is committed will be automatically reverted. This variable defaults to
‘t’. See Section 5.6 [Committing changes|, page 9.

‘cvs-update-prog-output-skip-regexp’
The ‘~u’ flag in the ‘modules’ file can be used to run a command whenever a
‘cvs update’ is performed (see cvs(5)). This regexp is used to search for the
last line in that output. It is normally set to ‘¢’. That setting is only correct if
the command outputs nothing. Note that PCL-CVS will get very confused if
the command outputs anything to stderr.

‘cvs-cvsroot’
This variable can be set to override ‘CVSROOT’. It should be a string. If it is
set, then every time a cvs command is run, it will be called as ‘cvs -d cvs-
cvsroot. .. . This can be useful if your site has several repositories.

‘log-edit-require-final-newline’

When you enter a log message by typing into the ‘*cvs-commit-messagex’
buffer, PCL-CVS normally automatically inserts a trailing newline,
unless there already is one. This behavior can be controlled via
‘cvs-commit-buffer-require-final-newline’. If it is ‘t’ (the default
behavior), a newline will always be appended. If it is ‘nil’, newlines will never
be appended. Any other value causes PCL-CVS to ask the user whenever
there is no trailing newline in the commit message buffer.

‘log-edit-changelog-full-paragraphs’
If this variable is non-nil, include full ‘ChangeLog’ paragraphs in the CVS log
created by ‘cvs-mode-changelog-commit’. This may be set in the local vari-
ables section of a ‘ChangeLog’ file, to indicate the policy for that ‘ChangeLog’.

A ‘ChangeLlog’ paragraph is a bunch of log text containing no blank lines; a
paragraph usually describes a set of changes with a single purpose, but perhaps
spanning several functions in several files. Changes in different paragraphs are
unrelated.

You could argue that the CVS log entry for a file should contain the full
‘Changelog’ paragraph mentioning the change to the file, even though it may

Chapter 8: Customization 17

mention other files, because that gives you the full context you need to under-
stand the change. This is the behavior you get when this variable is set to t,
the default.

On the other hand, you could argue that the CVS log entry for a change should
contain only the text for the changes which occurred in that file, because the
CVS log is per-file. This is the behavior you get when this variable is set to
nil.

‘cvs-sort-ignore-file’
If this variable is set to any non-nil’ value, the ‘.cvsignore’ file will always
be sorted whenever you use ‘cvs-mode-ignore’ to add a file to it. This option
is on by default.

8.1 Customizing Faces

PCL-CVS adds a few extra features, including menus, mouse bindings, and fontification
the ‘xcvs*’ buffer. The faces defined for fontification are listed below:

‘cvs—header-face’
used to highlight directory changes.

‘cvs-filename-face’
used to highlight file names.

‘cvs-unknown-face’
used to highlight the status of files which are ‘Unknown’.

‘cvs-handled-face’
used to highlight the status of files which are handled and need no further
action.

‘cvs-need-action-face’
used to highlight the status of files which still need action.

‘cvs-marked-face’
used to highlight the marked file indicator (‘*’).

Chapter 9: Bugs (known and unknown) 18

9 Bugs (known and unknown)

If you find a bug or misfeature, don’t hesitate to tell us! Send email to
bug-gnu-emacs@gnu.org which is gatewayed to the newsgroup ‘gnu.emacs.bugs’. Feature
requests should also be sent there. We prefer discussing one thing at a time. If you find
several unrelated bugs, please report them separately. If you are running PCL-CVS under
XEmacs, you should also send a copy of bug reports to xemacs-beta@xemacs.org.

If you have problems using PCL-CVS or other questions, send them to
help-gnu-emacs@gnu.org, which is gatewayed to the ‘gnu.emacs.help’ newsgroup. This
is a good place to get help, as is cvs-info@gnu.org, gatewayed to ‘gnu.cvs.help’.

If you have ideas for improvements, or if you have written some extensions to this
package, we would like to hear from you. We hope that you find this package useful!

Below is a partial list of currently known problems with PCL-CVS version 2.0.

Unexpected output from CVS
Unexpected output from CVS may confuse PCL-CVS. It will create warning
messages in the ‘*cvs*’ buffer alerting you to any parse errors. If you get these
messages, please send a bug report to the email addresses listed above. Include
the contents of the ‘*cvs*’ buffer, the output of the CVS process (which should
be found in the ‘*cvs-tmp*’ buffer), and the versions of Emacs, PCL-CVS and
CVS you are using.

Function and Variable Index

Function and Variable Index

This is an index of all the functions and variables documented in this manual.

C

cvs-allow-dir-commit........................ 6
cvs-auto-remove-directories (variable) 16
cvs-auto-remove-handled (variable).......... 16
cvs-auto-revert (variable)................ 9, 16
cvs—checkout 7
cvs-cvsroot (variable)....................... 16
cvs-dired-action.............. 7
cvs—dired-use-hook.......................... 7
cvs—examine, 7,8
cvs-filename-face (face)................... 17
cvs-force-dir-tag (variable) 12
cvs-handled-face (face) 17
cvs-header-face (face) 17
cvs-help..........ooiiiiii 13
cvs-idiff-imerge-handlers (variable)........ 12
cvs-invert-ignore-marks (variable).......... 12
cvs-marked-face (face) 17
cvs-mode-acknowledge....................... 11
cvs-mode-add 10
cvs-mode-add-change-log-entry-other-window
.. 10
cvs-mode-byte-compile-files............... 13
cvs-mode-changelog-commit 16
cvs-mode-commit 9
cvs-mode-commit-setup....................... 9
cvs-mode-delete-lock....................... 13
cvs-mode-diff 12
cvs-mode-diff-backup....................... 12
cvs-mode-diff-head......................... 12
cvs-mode-diff-vendor....................... 12
cvs-mode-examine 8
cvs-mode-find-file......................... 10
cvs-mode-find-file-other-window........... 10
cvs—-mode-force-command 6
cvs-mode-idiff Ll 12
cvs-mode-ignore............. ..., 11
cvs-mode-ignore, and ‘.cvsignore’ sorting.... 17
cvs-mode-imerge 12

cvs—mode-10g........, 10, 15

19
cvs—mode-mark 9
cvs-mode-mark-all-files 9
cvs-mode-mark-matching-files............... 9
cvs—-mode-next-line.......................... 9
cvs-mode-previous-line 9
cvs-mode-quit L.l 13
cvs—-mode-remove-file....................... 10
cvs-mode-remove-handled 11
cvs-mode-remove-handled (variable).......... 11
cvs-mode-status.......................... 8, 10
cvs—mode—tag ...ttt 12
cvs-mode-toggle-marks....................... 9
cvs-mode-undo-local-changes 11
cvs-mode-unmarkiiiii... 9
cvs-mode-unmark-all-files 9
cvs-mode-unmark-up.....................oo... 9
cvs—mode-untagc.oiuiiiinii... 12
cvs-mode-update............ 8, 12
cvs-need-action-face (face) 17
cvs—quickdirl 7
CUS=TEAG. . ottt 12
cvs-sort-ignore-file (variable)............. 16
cvs-status il 7,8
cvs-status-mode 8
cvs-unknown-face (face).................... 17
cvs-update il 7,8

cvs-update-prog-output-skip-regexp (variable)
.. 16

log-edit-changelog-full-paragraphs (variable)

....................................... 16
log-edit-confirm (variable) 9
log-edit-insert-changelog 14

log-edit-require-final-newline (variable) .. 16

v

ve-print-logl 15

Concept Index

Concept Index

This is an index of concepts discussed in this manual.

k

xcvs* buffer contents 4
‘-u’ option in modules file 16
‘.cvsignore’ file, sorting 16

A

About PCL-CVS 1
Active files 6
Addingfiles 10
Applicable 6
Author, how toreach 18
Authors. ... 1
Automatically inserting newline............... 16
Automatically remove handled files............ 16
Automatically sorting ‘.cvsignore’ 16

B

Buffer contents L 4
Bugs, how to report them 18
Bugs, known 18
Byte compilation oo ool 13

C

‘ChangeLog’ paragraphs 16
Command-line options to CVS................. 7
Commit buffer................................ 9
Commit message, inserting newline............ 16
Committing changes 9
Conflicts, how to resolve them 12
Context diff, how toget 16
Contributors 1
Creating the *cvs* buffer...................... 7
Customization.................. ... 16
‘CVSROOT’, overridingooveueean.. 16

D

Deleting files L. 10
Diff. .. 12
Dired 10

20
E
Ediff......... 12
Edit buffer 9
Editing files 10
Email to the author.......................... 18
Erasing commit message 9
Erasing input buffer.............. 16
Examplerun 3
Expunging uninteresting entries............... 11
F
FAQ .. oo 18
File selection 6
Finding files.................. 10
Flush changes 11
Getting rid of lock files....................... 13
Getting rid of uninteresting lines.............. 11
Getting status. ... 10
H
Handled lines, removing them 11
Help ..o 13
I
Ignoring files 11
Installation..........o L. 2
Introduction........ il 3
Invoking diff 12
Invoking dired 10
Invoking ediff........... i 12
K
Knownbugs.................. 18
L
Loading files.......... o i i 10
Lock files...........ooo i 13
Log (RCS/cvs command) 10
Log Editmode 14

Log Viewmode.............. 15

Concept Index

M

Marked files........ 6
Marking files 9
Merging with ediff and emerge 12
mode, Log Edit........... 14
mode, Log View 15
Modules file (‘-u’ option)..................... 16
Movement Commands. 9

@)

Optional switches to CVS 7
output, logs 15

P

Problems, list of common..................... 18
Putting files under CVS control............... 10
QUItting 13

R

Recompiling elisp files........................ 13
Removing files............. 10
Removing uninteresting (processed) lines 11

Reporting bugs and ideas..................... 18

21
Require final newline......................... 16
Resolving conflicts 12
Resurrecting files 10
Reverting buffers after commit 9, 16
Sample session............... i, 3
Selected files 6
Selecting files (commands to mark files) 9
Sorting ‘.cvsignore’ file 16
Special prefix............. 8
Status (cvs command) 10
T
Tagging files.............. ... 12
Undo changes 11
Unidiff, how toget........................... 16
Uninteresting entries, getting rid of them 11
Update program (‘-u’ option in modules file) .. 16
Updating files o . 12
Variables, listof all 16
Viewing differences 12

Key Index

Key Index

22

This index includes an entry for each PCL-CVS key sequence documented in this manual.

%

%--mark files matching regexp.................. 9
=—-run ‘cvs diff’l 12
?

P-help .. 13

a-addafile............l 10
A--add ‘Changelog’ entry 10

C

c—-commit files............. 9
C--commit files with ‘ChangeLog’ message....... 9
C-k--remove selected entries 11

D

d=--run ‘cvs diff’ 12
db--diff against base version 12
DEL--unmark previous file...................... 9
dh--diff against head of repository............. 12
dv--diff against vendor branch 12

E

e—-invoke ‘ediff’.................. 12
ESC DEL--unmark all files 9

F

f--find file or directory 10

L

1-run ‘cvs 1og ... 10

M

m--marking afile................, 9
M--marking all files............ 9
M-t--repository tag files 12

N

n—-Movedownonefile......................... 9

@)

o--find file in other window 10
O--update files, 12

P

p—-Moveuponefile 9
g-quit PCL-CVS...... 13

R

r-—-remove afile............. 10

S

s—-run ‘cvs status’ 10
SPC--Move down one file....................... 9

T

t-tagfiles........ ... L 12
T--toggle marks 9

U

U--undo changes 11
u—-unmark afile, 9

X

x--remove processed entries................... 11

Short Contents

1 About PCL-CVS ..t ittt i ittt ettt tnennsnnaness 1
2 Gettingstarted « oo v ettt ittt i i i 3
3 DBuffercontents.eeeeeeeeeseeeesscessooass 4
4 Selected fileS v v v v v v v v vttt vevvoseesssssseccnnoas 6
B CommandsS « oo v eeeseeessoscssscsssccassocccsses 7
6 EditingaLogMessage. . voeeevvvoeeeeeeeeeennnnns 14
7 Browsing a Logof Changes. . . o v oo v v eeeeeeeeees 15
8 Customization « o v e v v v vevesoesesoesssoeoasocoas 16
9 Bugs (known and unknown) i i il i, 18
Function and Variable Index « « « v v e o v v v e vttt e e v v ennnns 19
Concept Index v v v v v v v vttt eeeeessoeooeeesosssas 20

KeyIndex oo oo viinneieee e eeeeeeoseeennnns 22

11

Table of Contents

1

9

About PCL-CVS, 1
1.1 Contributors to PCL-CVS 1
1.2 Installationc.o o 2

Getting started, 3

Buffer contents 4

Selected files 6

Commandscooiiiiiiiinnnnnnnnns 7
5.1 Entering PCL-CVS..... 7
5.2 Setting flags for CVS commands.......................... 7
5.3 Updating the ‘*cvs*’ buffer............. 8
5.4 Movement Commandsouiiiiiiiiiinaaa... 9
5.5 Marking files.........o 9
5.6 Committing changes............... 9
5.7 Editing files. ... 10
5.8 Getting info about files L. 10
5.9 Adding and removing files 10
5.10 Undoing changes........... i 11
5.11 Removing handled entries.............................. 11
5.12 Ignoring files. 11
5.13 Viewing differences.......... 12
514 Running ediff....... 12
5.15 Updating files. ... 12
516 Tagging files.........o i 12
5.17 Miscellaneous commandsiiia.... 13

Editing a Log Message 14

Browsing a Log of Changes................ 15

Customization............................ 16
8.1 Customizing Faces 17

Bugs (known and unknown)............... 18

Function and Variable Index.................. 19

iii

Concept Index............ciiiiiinnnnn..

Key Index

v

